Thomas Shultz (PhD Yale, Psychology) is Professor Emeritus of Psychology and Associate Member of the School of Computer Science at McGill University. He taught courses in Computational Psychology and Cognitive Science. He is a Fellow of the Canadian Psychological Association, and a founder and twice Director of the McGill Cognitive Science Programs. Research interests include AI, cognitive science, cognitive development, evolution and learning, relations between knowledge and learning, decision making, problem solving, memory, neural networks, and agent-based modeling. He has over 440 research publications and over 8900 citations in these areas.
News:
News:
- We recently expanded our 2024 paper on GPT-4 understanding discourse by including two new experiments. Because of Google delays, here is how to access the new paper. Search for "GPT understands discourse", then select our original paper (listed 2nd), and finally press View PDF to see our new, expanded paper.
- Description of our work on humour is updated with a bizarre criminal incident in Newfoundland. Check it out for 3 new jokes.
- We have a new paper (2024) showing that GPT-4 understands discourse at least as well as average humans do. arXiv:2403.17196v1
- We presented 3 papers and 2 abstracts at the Cognitive Science conference in Sydney, Australia, July 2023. One paper used our Neural Probability Learner and Sampler (NPLS) model to simulate so-called pure reasoning in infants. Another paper presented a perceptual front end to NPLS using a convolutional neural network, allowing more natural representation of physical objects such as collections of marbles. The third paper presented a simple model of number comparison that simulates fundamental empirical phenomena on accuracy and response time. This model also generalizes robustly to more advanced tasks involving multi-digit integers, negative numbers, and decimal numbers.
- Our paper simulating and explaining the learning and use of probability distributions in infants is in the November 2022 issue of Psychological Review.
- Our invited chapter on computational models of developmental psychology is published in The Cambridge Handbook on Computational Cognitive Sciences (2023).
- Our invited chapter on Computational approaches to cognitive development: Bayesian and artificial-neural-network models has been published in The Cambridge Handbook of Cognitive Development (2022).
- Our paper showing that group membership trumps perceived reliability, warmth, and competence in social learning is published in Psychological Science (2022).
- More information on each of these foregoing papers can be found under PUBLICATIONS / Learning and development.
- Our invited chapter on the Cascade-Correlation machine learning algorithm for the Encyclopedia of Machine Learning and Data Science is published online at Springer (2022). More information on this chapter can be found under PUBLICATIONS / Neural networks.